Center for Air, Climate, & Energy Solutions

A goal of the Center is to democratize state-of-the-art modeling and policy analysis tools. Currently, estimates from CACES-developed models for (1) outdoor air pollution concentrations and (2) economic damages caused by human exposure to air pollution are publicly available to download.

Economic damages are derived from three separate reduced complexity models (RCMs) that estimate human health impacts from emissions. These models are also publicly available. 

 

Measure air pollutant concentrations across the country to improve the health of vulnerable populations.

Develop and disseminate tools for scientists, policymakers, and citizens to predict the health impacts and social costs of air pollution.

Evaluate the impact of future scenarios for electricity, transportation, and urban development on air quality and human health.

Quantify regional variation in mortality, heart disease, and other health conditions due to air pollution using novel national exposure and health data.

Dashboard Image-17-17-14-26-14.png

The Center for Air, Climate, and Energy Solutions is a multidisciplinary, multi-institutional research center to address critical questions at the nexus of air, climate, and energy. The center design addresses overarching themes of regional differences, multiple pollutants, and development and dissemination of tools for air quality impact assessment. Novel measurement and modeling approaches will be applied to understand spatial and temporal differences in human exposures and health outcomes. We will investigate a range of technology and policy scenarios for addressing our nation’s air, climate, and energy challenges, and test their potential ability to meet policy goals such as improved health outcomes and cost-effectiveness.

Mechanistic Models

Improving chemical transport models and developing reduced-complexity models for air quality and exposure assessment.

 

 

Field Measurements

Comprehensive measurements in three cities (Austin, TX; Oakland, CA; Pittsburgh, PA) to quantify factors influencing gradients in pollutant concentrations.

 

 

Empirical Models

Observation-based mapping of air pollution concentrations for the contiguous U.S. at high spatial resolution (~0.1 km) for exposure assessment.

 

Policy Scenarios & Outcomes

Investigation of policy scenarios using Project 1 models and a common policy framework.

Epidemiology

Nationally representative, population-based, health studies.

 

Peter Adams

Neil Donahue

Ines Azevedo

Paulina Jaramillo

Jeremy Michalek

2000px-Brigham_Young_University_medallio
People-14.png

C. Arden Pope

People-12.png
CMU_wordmark_stack_1500px-min.png
People-02.png
People-09.png
People-17.png
People-01.png
People-22.png
People-06.png
People-16.png
People-04.png

H. Scott Matthews

Allen Robinson

(co-director)

Albert Presto

Spyros Pandis

People-24.png

Nick Muller

GOV-Health-Canada_edited.png
People-05.png

Rick Burnett

Logo_for_Imperial_College_London.svg.png
Ezzati-13.png

Majid Ezzati

ubc-logo-2018-5-narrowsig-blue-rgb72-768
People-07.png

Michael Brauer

University_of_Minnesota_wordmark.png
People-10.png
People-23.png
People-11.png
People-03.png

Jason Hill

Dylan Millet

Steve Polasky

Jay Coggins

2000px-University_of_Texas_at_Austin_log
People-15.png

Joshua Apte

Signature_Center_Purple_Hex.png
People-21.png

Julian Marshall

(co-director)

2000px-Virginia_Tech_logo.svg.png
People-19.png

Steve Hankey

 

Clark LP, Millet DB, Marshall JD. Changes in transportation-related air pollution exposures by race-ethnicity and socioeconomic status: outdoor nitrogen dioxide in the United States in 2000 and 2010. Environmental Health Perspectives 2017;125(9):097012 (10 pp.).

Heo J, Adams PJ, Gao HO. Public health costs accounting of inorganic PM2.5 pollution in metropolitan areas of the United States using a risk-based source-receptor model. Environment International 2017;106:119-126.

Muller NZ. Environmental benefit-cost analysis and the national accounts. Journal of Benefit-Cost Analysis2017;1-40 [Epub ahead of print].

Muller NZ, Jha A. Does environmental policy affect scaling laws between population and pollution? Evidence from American metropolitan areas. PLOS One 2017;12(8):e0181407 (15 pp.).

Tessum CW, Hill JD, Marshall JD. InMAP: a model for air pollution interventions. PloS ONE2017;12(4):e0176131 (26 pp.).

Weis A, Jaramillo P, Michalek J. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection. Environmental Research Letters 2016;11(2):024009 (12 pp.).

Zhao Y, Saleh R, Saliba G, Presto AA, Gordon TD, Drozd GT, Goldstein AH, Donahue NM, Robinson AL. Reducing secondary organic aerosol formation from gasoline vehicle exhaust. Proceedings of the National Academy of Sciences of the United States of America 2017;114(27):6984-6989.

Zimmerman N, Presto AA, Kumar SPN, Gu J, Hauryliuk A, Robinson ES, Robinson AL, Subramanian R. Closing the gap on lower cost air quality monitoring:machine learning calibration models to improve low-cost sensor performance. Atmospheric Measurement Techniques Discussions August 2017 [In review].