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Claude Monet (1872), “Impression, Sunrise”, fromWikimedia Commons



Air Pollution Imposes Substantial External Costs
5/45

� One of the top global risk factors (Forouzanfar et al., Lancet 2015).
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� One of the top global risk factors (Forouzanfar et al., Lancet 2015).

� The net benefits of U.S. EPA’s air regulations alone are 5–7 times larger than
those of all other federal regulations for the past ten years (Office of Management

and Budget of the US Government, 2016).
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� The net benefits of U.S. EPA’s air regulations alone are 5–7 times larger than
those of all other federal regulations for the past ten years (Office of Management

and Budget of the US Government, 2016).

� Air quality co-benefits of climate measures are substantial (Shindell et al., Science
2012;Watts et al., Lancet 2015;West et al., Nat. Clim. Change 2013).

⇒ Quantifying the social costs of air pollution is
crucial for important policy decisions associated
with public health, energy, and climate change.
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Social Costs of Air Pollution
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� Damages imposed by air pollution on human and the natural environment:

� Human health: Mortality (premature death), morbidity (illness)

� Natural environment: eutrophication, soil and water acidification, reduced tree
growth, reduced agricultural yields, impaired visibility, and decreased worker
productivity

� When monetized, the effects of fine particulate matter (PM2.5) on mortality
account for >95% of the social costs. (U.S. EPA, 2011; U.S. EPA, 1999).
⇒Mainly, heart and lung diseases.
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Fine Particulate Matter, PM2.5

7/45

� Primary PM (10–20%): directly emitted as PM
⇒ Elemental Carbon (EC), dust, and other inert PM

� Secondary PM (80–90%): chemically produced in the atmosphere
⇒ Inorganic PM: SO2, NOx, and NH3 gases
⇒ Secondary Organic Aerosol (SOA): certain Volatile Organic Compounds (VOCs)
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Important Secondary PM2.5 species
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� Inorganic PM (∼50%)
⇒ Only three species: sulfate (SO 2–

4 ), nitrate (NO –
3 ), and ammonium (NH +

4 )
⇒Well-understood, but non-linear.

� Organic PM (∼50%)
⇒ Innumerous (104–105) species found in the atmosphere.
⇒ Very complicated, but understanding improved substantially in recent years.

� PM2.5 is regulated by mass concentration.
⇒ U.S. federal standards: Annual mean 12 µg/m3

⇒World Health Organization’s guideline: Annual mean 10 µg/m3
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Inorganic Chemistry, well-understood but complex
9/45

For example, ammonia (NH3) can produce three different amounts of PM2.5:

1. NH3 remains as Gas:
If there are no SO2 and NOx.

2. NH3 forms Ammonium Sulfate PM:
Sulfate is already PM.

3. NH3 forms Ammonium Nitrate PM:
More under cold temperature.

Net Changes in PM2.5 mass

[g/mol of NH3]

+17

+80

0

These reactions occur over hundreds of kilometers or more downwind!
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Chemical Transport Model (CTM)
10/45

� The most rigorous method to simulate air quality.
� tries to simulate all the relevant processes:
⇒ divides the atmosphere into a 3D grid
⇒ emissions, transport, chemical reactions, and removal processes

� A collaborative work among a large community of scientists and engineers.
� used for U.S. EPA’s Regulatory Impact Analyses and State Implementation Plans.
� I ran CAMx
⇒ Horizontal resolution: 148× 112 grid (1 cell = 36 km × 36 km)
⇒ Vertical resolution: 14 layers for 16 km
⇒ Temporal resolution: 15 minutes or less

148 112

14
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How to Estimate the Social Cost of Emissions
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Changes in PM2.5

Changes in
Mortality Rate

Change in
Premature Deaths

Social Costs

1. Run Air Quality Simulations

2. Use Epidemiological Studies

3. Estimate Population Exposed to PM2.5

4. Use Value of a Statistical Life

Emissions
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� PM2.5 formation varies by:

� Air pollutant
� Atmospheric conditions
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� Epidemiology:
+1 µg/m3 −→ +1% mortality
(Krewski et al., 2009; Lepeule et al., 2012)
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� PM2.5 concentrations:
⇒ High near the source
⇒ Low far from the source
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Changes in PM2.5
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� U.S. EPA’s Value of a Statistical Life (VSL):
⇒ $8M (in 2010 USD)
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Marginal Social Cost, a Useful Metric
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Policy interventions usually result in marginal changes in emissions.

Social Cost [$]

Emissions [t]
= Marginal Social Cost [$/t]
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Carbon Capture and Storage (CCS) Technology: Air Quality?
13/45

(Heo et al., Environ. Sci. Technol. 2015)
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(Heo et al., Environ. Sci. Technol. 2015)

REVIEW

Carbon Capture and Storage:
How Green Can Black Be?
R. Stuart Haszeldine

The capture of carbon dioxide at the point of emission from coal- or gas-burning power plants is an
attractive route to reducing carbon dioxide emissions into the atmosphere. To commercialize carbon
capture, as well as transport of liquified carbon dioxide and its storage in exploited oil fields or saline
formations, many technological, commercial, and political hurdles remain to be overcome. Urgent
action is required if carbon capture and storage is to play a large role in limiting climate change.

Carbon dioxide emissions from fossil fuel
combustion are a major contributor to cli-
mate change (1). The current low price of

fossil fuel energy is partly subsidized by unpriced
CO2 emissions, exploiting the degradation of
natural atmosphere and ocean. Even if the debate
on climate change is over, the actions to limit
CO2 emissions have barely started.

One step toward reducing CO2 emissions is to
capture the CO2 generated during combustion and
store it in a suitable place. This process of carbon
capture and storage (CCS) has the potential to re-
duce future world emissions from energy by 20%
(2). CCS is already operating in trials, with 3 mega-
tons of CO2 (Mt CO2) per year from power plants
or natural gas cleanup being captured and stored.
CCS technologies are now in a scale-up period.
Worldwide, large demonstrations are planned on
36 power plants. However, there is a lamentable
lack of financial commitment to real construction.
If design and construction of these demonstration
plants does not start now, they will not operate by
2014, and learning from these to provide commer-
cial credibility will drift beyond 2020. The world-
wide construction of many tens to hundreds of
large CCS plants—necessary for a substantial impact
on climate mitigation—will then be delayed beyond
the deadline set by climate change predictions.

Will CCS actually deliver material reductions
of CO2 before 2030? Or is it instead a set of over-
ambitious promises that act as an excuse for power
generators to pollute with black coal and “clean”
gas under a pretext of green development, locking
the world into decades of high CO2 emissions (3)?
Here, I analyze the technical challenges associated
with capture, transport, and storage of CO2 and then
look at what needs to be done for a viable CCS
industry to be created between 2020 and 2030.

The Purpose of CCS
There is a broad political consensus that the global
temperature rise should be limited to 2°C, com-
pared with preindustrial temperatures. However,

such declarations lack urgency, targets, or specified
time scales. The scientific analysis has swung to
define CO2 limits not as a tonnage released per
year, but as the total mass of fossil carbon released
during this geologically short industrial time span
(4). CO2 emissions must therefore start to fall from
2020 onward. CCS is unavoidable if fossil fuels
continue to be burned at more than 10% of the
present rate. It is surprising, then, that so few CCS
projects are underway.

Fossil fuel combustion supplies more than 85%
of energy for industrial activities (5) and is thus the
main greenhouse gas contributor. Coal is on a path
to supply 28% of global energy by 2030, as part of
a 57% increase in CO2 emissions (5). CCS is a
direct emissions mitigation option, usually con-
sidered as an interim system to enable a 50-year
transition away from fossil fuels. Although current
CCS technologies are only at the pilot stage, the

scale of themain ambition ismassive: to fit all coal
and gas power plants with CCS by 2050 and
reduce world CO2 emissions from energy by 20%
(2). Accordingly, CCS will incur incremental
costs. For example, in the U.K., CCS may cost
each household an extra 10% per year for elec-
tricity. That may seem expensive, but if CCS is
developed now as part of a portfolio of global cli-
mate protection, the costs of CO2 abatement re-
quired in 2050 are predicted to reduce from $500
to $50 per ton (2).

CCS strips out, purifies, and concentrates CO2

emissions from fossil fuel combustion at large
single sources such as power plants (Fig. 1). Three
methods of CO2 capture are currently being in-
vestigated (1). Postcombustion capture separates
the CO2 with the use of chemical solvents, precom-
bustion capture chemically strips off the carbon,
leaving hydrogen to burn, and oxyfuel combus-
tion burns coal or gas in denitrified air to yield only
CO2 and water. After leaving the power plant,
the captured CO2 is pressurized to 70 bar, form-
ing a liquid that can be transported to a storage
site, where the fluid is injected into rock pores
deeper than 800 m below the surface (6, 7). Good
choices of storage sites will retain CO2 without
appreciable seepage for tens of thousands of years.
Monitoring will be required for decades into the
future, combined with techniques to remediate de-
ficient storage. In principle, CCS can be applied
not only to power plants but also to large industrial
sites, such as refineries, steel making, fertilizers,
ethanol fermentation, and cement manufacture
(1). However, these applications are proving to
be quite slow to develop on a global level. The
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Fig. 1. Diagrammatic representation of the life-cycle chain of fossil fuel use. CO2 separation and
capture at power plants enables storage of CO2 in porous rocks deep below ground.
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(Haszeldine, Science 2009)
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CCS Ammonia May Seriously Compromise Climate Benefits!
Main Scenario: capturing 2Gt CO2 (∼ current CO2 from coal generation) in 2050

14/45

(Heo et al., Environ. Sci. Technol. 2015)
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(b) Two major uncertainties

Policy Implications:
� The social cost of CCS ammonia: $31-68/t CO2 captured by CCS.
⇒ comparable to the social cost of carbon (U.S. IAWG, 2013): $28-100/t CO2
⇒ CCS ammonia may seriously compromise the climate benefits from CCS.

� Our results provide a policy guide for the appropriate level of CCS ammonia
control for a wide range of future CCS scenarios.
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Wanted: A Better Tool for Policy Research
16/45

� Chemical Transport Models (CTMs) are too expensive.
� Difficult to use: require expertise in atmospheric science and high-performance

computing.
� Often infeasible. For example,

⇒ 100s or more CTM runs for cost-benefit analysis with many policy options?
⇒Monte Carlo simulation for uncertainty analysis?

� Current reduced-form models rely on overly simple or outdated air quality
models.

� Using a simple old air quality model (Latimer, 1996), APEEP (Muller and Mendelsohn, 2007;

Muller et al., 2011) provides per-ton social costs of major pollutants for all
U.S. counties (about 3,100).
⇒ A CTM will require 6,000 CPU-years!
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The Estimating Air pollution Social Impact Using Regression
(EASIUR) Model

17/45

(Heo et al., Atmos. Environ. 2016; Heo et al., Environ. Sci. Technol. 2016)

Goal:

Tobuild aPer-tonneSocialCostmodel thatpredicts like a state-
of-the-art CTM without too much computation.

Policy Research S cAtmospheric cien e 

(Image credit: http://steel-bridges.com/tech-composite-beam-bridge.htm)
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Research Design (1)
18/45

Our goal is to derive:

Per-tonne Social Cost [$/t] = f (Exposed Population, Atmospheric Variables)

1. Select 100 random CAMx cells based on population.

: Training sample : Test sample

� 50 training samples:
⇒ Regression

� 50 test samples:
⇒ Out-of-sample evaluation
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Research Design (2)
19/45

Our goal is to derive:

Per-tonne Social Cost [$/t] = f (Exposed Population, Atmospheric Variables)

2. Run CAMx to estimate PM2.5 increase from“marginal”emissions.

: Training sample : Test sample

� For EC, SO2, NOx, and NH3

� ∼30 TB data were generated
although tagging (PSAT) reduced
computations by 90%.

Introduction How much? Who’s Responsible? Decision Making Conclusions



Research Design (3)
20/45

Our goal is to derive:

Per-tonne Social Cost [$/t] = f (Exposed Population, Atmospheric Variables)

3. Calculate per-tonne social costs for the 100 locations.

: Training sample : Test sample
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Research Design (4)
21/45

Our goal is to derive:

Per-tonne Social Cost [$/t] = f (Exposed Population, Atmospheric Variables)

4. Run regressions to achieve our goal!

: Training sample : Test sample

� Chose the best using Akaike Information
Criterion (AIC) among many regression
models.

� Out-of-sample test (Morris et al., 2005):

Mean Fractional Bias =
2

N

N∑
i

Pi – Oi

Pi + Oi

Mean Fractional Error =
2

N

N∑
i

∣∣∣∣ Pi – Oi

Pi + Oi

∣∣∣∣
Performance MFB MFE

“Excellent” ≤ ±0.15 ≤ 0.35
“Good” ≤ ±0.30 ≤ 0.50
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Average Plumes for Quantifying Exposed Population
22/45
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(a) EC Average Plume (Summer)

� averaged CTM results of 50 sample locations.
� normalized an average plume created from CTM results:∑

x,y Weightx,y = 1.0
� used as spatial weights in regression to express exposed population:

Exposed Population =
∑

x,y

(
Wind-Direction-AdjustedWeightx,y × Populationx,y

)
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(b) SO2 Average Plume (Summer)

� averaged CTM results of 50 sample locations.
� normalized an average plume created from CTM results:∑

x,y Weightx,y = 1.0
� used as spatial weights in regression to express exposed population:

Exposed Population =
∑

x,y

(
Wind-Direction-AdjustedWeightx,y × Populationx,y

)
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EC: Marginal Social Cost (Summer)
23/45

Marginal Social Cost [$/t EC] = 1.1 · 1036 · P0.78 · T–21 · Pr5.6

P: Exposed Population [# of People], T : Temperature [K], Pr: Surface Atmopsheric Pressure [hPa]
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(b) Out-of-sample evaluation

Figure: EC model evaluation. Blue: 95% confidence intervals. Orange: 95% prediction intervals.
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EC: Marginal Social Cost (Summer)
23/45

Marginal Social Cost [$/t EC] = 1.1 · 1036 · P0.78 · T–21 · Pr5.6

P: Exposed Population [# of People], T : Temperature [K], Pr: Surface Atmopsheric Pressure [hPa]
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SO2: Marginal Social Cost (Summer)
24/45

MSC [$/t SO2] = 1.4 · 1032 · P0.56 · T–20 · Pr7.3 · Hu–0.74 · TS0.23 · TA–0.15

P: Exposed Population [# of People], T : Temperature [K], Pr: Surface Atmopsheric Pressure [hPa],

Hu: Absolute Humidity [ppm], TS: Total Sulfate [µmol/m3], TA: Total Ammonia [µmol/m3]
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Figure: SO2 model evaluation. Blue: 95% confidence intervals. Orange: 95% prediction intervals.
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Success! Most regression models meet the “Excellent” criteria.
25/45

Wi: Winter, Sp: Spring, Su: Summer, Fa: Fall
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� “Excellent” and “Good”:

⇒ ”the best a model can be expected
to achieve” (Boylan and Russell, 2006).

� Small additional uncertainty for air
quality modeling.
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EASIUR’s Marginal Social Costs [$/t] at the Point of Emissions
26/45
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Inert Primary PM2.5 modeled by Elemental Carbon

This is for ground-level emissions. There are two more for 150m and 300m emission elevations.
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Summary: Why EASIUR?
27/45

Current Method

Changes in PM2.5

Changes in
Mortality Rate

Change in
Premature Deaths

Social Costs

1. Run Air Quality Simulations

2. Use Epidemiological Studies

3. Estimate Population Exposed to PM2.5

4. Use Value of a Statistical Life

Emissions

EASIUR Method

Social Costs

Emissions

EASIU
R

� Accurate

� Fast

� Easy-to-use

� Can be updated

To get EASIUR,
google EASIUR!
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Outline
28/45

1 Introduction

2 How to Better Quantify the Social Costs of Air Pollution?

3 How to Better Identify the Sources of Air Pollution Social Costs?

4 Optimal Societal Decision Making

5 Conclusions & FutureWork
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Very hard to find the sources of PM2.5 that you are exposed to!
29/45

� Because innumerable emission sources and air pollutants travel long distances
while they undergo complex chemical reactions.

� Current methods:
� Receptor Models: Chemical Mass Balance (CMB), Positive Matrix Factorization (PMF)

⇒ limited spatial/sectoral/temporal resolutions
⇒ suitable for descriptions, but not for predictions.

� Chemical Transport Models: Brute-force, tagging, DDM, and adjoint methods

⇒ computationally very expensive

New: The Air Pollution Social Cost Accounting (APSCA) Model
(Heo et al., Environ. Int. 2017)

� quantifies sources of PM2.5 social costs and their contributions
⇒ spatially resolved for the entire U.S. domain,
⇒ temporally resolved for four seasons,
⇒ sectorally resolved for emission inventory’s resolution.

� estimates who are affected and who are affecting.
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The Air Pollution Social Cost Accounting (APSCA) Model
30/45

� Key idea: spatially distribute EASIUR’s social costs with population-weighted
average plumes.

EC Average Plume forWinter
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The Air Pollution Social Cost Accounting (APSCA) Model
30/45

� Key idea: spatially distribute EASIUR’s social costs with population-weighted
average plumes.

EC Average Plume forWinter at one out-of-sample location (Chattanooga, TN)

Average plume
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The Air Pollution Social Cost Accounting (APSCA) Model
30/45

� Key idea: spatially distribute EASIUR’s social costs with population-weighted
average plumes.

Social costs originated from EC at one out-of-sample location (Chattanooga, TN):

by population-weighted average
plume
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The Air Pollution Social Cost Accounting (APSCA) Model
30/45

� Key idea: spatially distribute EASIUR’s social costs with population-weighted
average plumes.

Social costs originated from EC at one out-of-sample location (Chattanooga, TN):

by population-weighted average
plume

v.s.

by CTM (CAMx)
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Comparisons at all downwind locations: CTM v.s. New Method
31/45

� Key idea: spatially distribute EASIUR’s social costs with population-weighted
average plumes.

Social costs originated from EC at Chattanooga, TN:
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Comparisons at all downwind locations: CTM v.s. New Method
31/45

� Key idea: spatially distribute EASIUR’s social costs with population-weighted
average plumes.

Social costs originated from EC, SO2, NOx, NH3 at Chattanooga, TN:
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Summary: Why APSCA (& EASIUR)?
32/45

For an emission source,
Who are affected?

Receptor

Emissions

EASIU
R

…...

Receptor
Receptor
Receptor

Receptor

Receptor

Social Costs

APSC
A

Receptor

Em
issions

…...

Em
issions

Em
issions

Em
issions

Em
issions

Em
issions

APSC
A

EASIU
R

For a receptor,
Who are affecting?

� Accurate

� Fast

� Easy-to-use

� Can be updated
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Emission Sources responsible for
Air Quality Social Cost in the NewYork Metropolitan Area

33/45
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� The most comprehensive social cost accounting!
� Policy paradigm shift:

Emission Source oriented =⇒ Receptor oriented

What to reduce and how much FOR YOU!
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Emission Sources responsible for
Air Quality Social Cost in the Los Angeles Metropolitan Area

33/45
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� The most comprehensive social cost accounting!
� Policy paradigm shift:

Emission Source oriented =⇒ Receptor oriented

What to reduce and how much FOR YOU!
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APSCA Application: 14 Metropolitan Areas in 2005
34/45

San Francisco-Oakland-Hayward CA
Seattle-Tacoma-Bellevue WA
Los Angeles-Long Beach-Anaheim CA
Phoenix-Mesa-Scottsdale AZ
Denver-Aurora-Lakewood CO
Dallas-Fort Worth-Arlington TX
Minneapolis-St.Paul-Bloomington MN/WI
Chicago-Naperville-Elgin IL/IN/WI
Detroit-Warren-Dearborn MI
Miami-Fort Lauderdale-West Palm Beach FL
Washington-Arlington-Alexandria DC/VA/MD/WV
Philadelphia-Camden-Wilmington PA/NJ/DE/MD
New York-Newark-Jersey City NY/NJ/PA
Boston-Cambridge-Nashua MA/NH
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14Metropolitan Areas: Social Cost Fractions by 12 Source Sectors
35/45

Sa
n 

Fr
an

ci
sc

o-
O

-H

Se
at

tle
-T

-B

Lo
s A

ng
el

es
-L

-A

Ph
oe

ni
x-

M
-S

D
en

ve
r-

A
-L

D
al

la
s-

F-
A

M
in

ne
ap

ol
is-

S-
B

C
hi

ca
go

-N
-E

D
et

ro
it-

W
-D

M
ia

m
i-F

-W

W
as

hi
ng

to
n-

A
-A

Ph
ila

de
lp

hi
a-

C
-W

N
ew

 Y
or

k-
N

-J

Bo
st

on
-C

-N

0.0

0.2

0.4

0.6

0.8

1.0

So
ci

al
 C

os
t F

ra
ct

io
n

Commercial marine
Non-EGU
Electric Gen. Unit
Canada/Mexico
On-road
Non-road mobile
Area
Biogenic
Fire
Other transportation
Agriculture
Fugitive Dust

West EastEast
Introduction How much? Who’s Responsible? Decision Making Conclusions



14Metropolitan Areas: Social Cost Fractions by 12 Source Sectors
35/45

Sa
n 

Fr
an

ci
sc

o-
O

-H

Se
at

tle
-T

-B

Lo
s A

ng
el

es
-L

-A

Ph
oe

ni
x-

M
-S

D
en

ve
r-

A
-L

D
al

la
s-

F-
A

M
in

ne
ap

ol
is-

S-
B

C
hi

ca
go

-N
-E

D
et

ro
it-

W
-D

M
ia

m
i-F

-W

W
as

hi
ng

to
n-

A
-A

Ph
ila

de
lp

hi
a-

C
-W

N
ew

 Y
or

k-
N

-J

Bo
st

on
-C

-N

0.0

0.2

0.4

0.6

0.8

1.0

So
ci

al
 C

os
t F

ra
ct

io
n

Commercial marine
Non-EGU
Electric Gen. Unit
Canada/Mexico
On-road
Non-road mobile
Area
Biogenic
Fire
Other transportation
Agriculture
Fugitive Dust

Power plants
in the east

West EastEast
Introduction How much? Who’s Responsible? Decision Making Conclusions



14Metropolitan Areas: Social Cost Fractions by 12 Source Sectors
35/45

Sa
n 

Fr
an

ci
sc

o-
O

-H

Se
at

tle
-T

-B

Lo
s A

ng
el

es
-L

-A

Ph
oe

ni
x-

M
-S

D
en

ve
r-

A
-L

D
al

la
s-

F-
A

M
in

ne
ap

ol
is-

S-
B

C
hi

ca
go

-N
-E

D
et

ro
it-

W
-D

M
ia

m
i-F

-W

W
as

hi
ng

to
n-

A
-A

Ph
ila

de
lp

hi
a-

C
-W

N
ew

 Y
or

k-
N

-J

Bo
st

on
-C

-N

0.0

0.2

0.4

0.6

0.8

1.0

So
ci

al
 C

os
t F

ra
ct

io
n

Commercial marine
Non-EGU
Electric Gen. Unit
Canada/Mexico
On-road
Non-road mobile
Area
Biogenic
Fire
Other transportation
Agriculture
Fugitive Dust

Power plants
in the east

West EastEast

Non-EGU point sources

Introduction How much? Who’s Responsible? Decision Making Conclusions



14Metropolitan Areas: Social Cost Fractions by 12 Source Sectors
35/45

Sa
n 

Fr
an

ci
sc

o-
O

-H

Se
at

tle
-T

-B

Lo
s A

ng
el

es
-L

-A

Ph
oe

ni
x-

M
-S

D
en

ve
r-

A
-L

D
al

la
s-

F-
A

M
in

ne
ap

ol
is-

S-
B

C
hi

ca
go

-N
-E

D
et

ro
it-

W
-D

M
ia

m
i-F

-W

W
as

hi
ng

to
n-

A
-A

Ph
ila

de
lp

hi
a-

C
-W

N
ew

 Y
or

k-
N

-J

Bo
st

on
-C

-N

0.0

0.2

0.4

0.6

0.8

1.0

So
ci

al
 C

os
t F

ra
ct

io
n

Commercial marine
Non-EGU
Electric Gen. Unit
Canada/Mexico
On-road
Non-road mobile
Area
Biogenic
Fire
Other transportation
Agriculture
Fugitive Dust

Power plants
in the east

West EastEast

Non-EGU point sources

On-road/Non-road mobile sources

Introduction How much? Who’s Responsible? Decision Making Conclusions



14Metropolitan Areas: Social Cost Fractions by 12 Source Sectors
35/45

Sa
n 

Fr
an

ci
sc

o-
O

-H

Se
at

tle
-T

-B

Lo
s A

ng
el

es
-L

-A

Ph
oe

ni
x-

M
-S

D
en

ve
r-

A
-L

D
al

la
s-

F-
A

M
in

ne
ap

ol
is-

S-
B

C
hi

ca
go

-N
-E

D
et

ro
it-

W
-D

M
ia

m
i-F

-W

W
as

hi
ng

to
n-

A
-A

Ph
ila

de
lp

hi
a-

C
-W

N
ew

 Y
or

k-
N

-J

Bo
st

on
-C

-N

0.0

0.2

0.4

0.6

0.8

1.0

So
ci

al
 C

os
t F

ra
ct

io
n

Commercial marine
Non-EGU
Electric Gen. Unit
Canada/Mexico
On-road
Non-road mobile
Area
Biogenic
Fire
Other transportation
Agriculture
Fugitive Dust

Power plants
in the east

West EastEast

Non-EGU point sources

CanadaMexico

Canada

Canada

On-road/Non-road mobile sources

Introduction How much? Who’s Responsible? Decision Making Conclusions



14 Metropolitan Areas: Social Cost Fractions by Source Distance
36/45
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14 Metropolitan Areas: Social Cost Fractions by Source Distance
36/45
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14 Metropolitan Areas: Social Cost Fractions by Source Distance
36/45
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Outline
37/45

1 Introduction

2 How to Better Quantify the Social Costs of Air Pollution?

3 How to Better Identify the Sources of Air Pollution Social Costs?

4 Optimal Societal Decision Making

5 Conclusions & FutureWork
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Local Policy: Improving State Implementation Plans (SIPs)?
38/45

� Background:
⇒ PM2.5 nonattainment areas: state and local air quality management
agencies have to show U.S. EPA how to meet the standards with SIPs.
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⇐ Source breakdowns for
some recently designated
nonattainment areas
estimated by APSCA.
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Local Policy: Improving State Implementation Plans (SIPs)?
38/45

� Background:
⇒ PM2.5 nonattainment areas: state and local air quality management
agencies have to show U.S. EPA how to meet the standards with SIPs.

� Goal:

Maximize
(
the social benefits of control measures (with EASIUR)

)
–
(
the costs of control measures

)
subject to:

·Meet the PM2.5 standard (with APSCA).
·Meet the budget constraints.
·Meet the technical constraints.
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Federal Policy: Improving the Cross-State Air Pollution Rule (CSAPR)?
39/45

� Background: The Clean Air Act requires one state not to interfere with the
maintenance of air quality in downwind states.

Source-Receptor Relationship from 4405 Power Plants in 2005
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Federal Policy: Improving the Cross-State Air Pollution Rule (CSAPR)?
39/45

� Background: The Clean Air Act requires one state not to interfere with the
maintenance of air quality in downwind states.

Source-Receptor Relationship from 4405 Power Plants in 2015
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Federal Policy: Improving the Cross-State Air Pollution Rule (CSAPR)?
39/45

� Background: The Clean Air Act requires one state not to interfere with the
maintenance of air quality in downwind states.

More benefits while controlling cross-state effects at a fair level?

Maximize
(
the social benefits of control measures (with EASIUR)

)
–
(
the costs of control measures

)
subject to:

· Limit cross-state interference at a desirable level (with APSCA).
·Meet the budget constraints.
·Meet the technical constraints.

Introduction How much? Who’s Responsible? Decision Making Conclusions



Federal Policy: Improving the Cross-State Air Pollution Rule (CSAPR)?
39/45

� Background: The Clean Air Act requires one state not to interfere with the
maintenance of air quality in downwind states.

10-30% more benefits with 7-17x less max cross-state interferences!
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Energy/Climate: Optimal Plans for the Clean Power Plan Rule?
40/45

� Background:
⇒ In 2015, U.S. EPA promulgated the Clean Power Plan Rule that requires states
to reduce CO2 from power plants by 32% below 2005 levels by 2030.
⇒ Each state has different conditions (e.g. CO2 reductions required by the rule,
power mix, transmission capacity, and renewable resources).

� Goal: Design state-level strategies that maximize social net benefits.

Maximize
(
the co-benefits of control measures (with EASIUR)

)
–
(
the costs of control measures

)
subject to:

·Meet the CO2 reduction goals.
·Meet the renewable constraints.
·Meet the transmission constraints.

Introduction How much? Who’s Responsible? Decision Making Conclusions



Energy/Climate: Optimal Plans for the Clean Power Plan Rule?
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� Background:
⇒ In 2015, U.S. EPA promulgated the Clean Power Plan Rule that requires states
to reduce CO2 from power plants by 32% below 2005 levels by 2030.
⇒ Each state has different conditions (e.g. CO2 reductions required by the rule,
power mix, transmission capacity, and renewable resources).

� Goal: Design state-level strategies that maximize social net benefits.

Maximize
(
the state’s co-benefits of control measures (with EASIUR & APSCA)

)
–
(
the costs of control measures

)
subject to:

·Meet the CO2 reduction goals.
·Meet the renewable constraints.
·Meet the transmission constraints.

National optimal and state optimal are different?
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Environmental Justice: Distributional Effects of Air Pollution
41/45

(Heo and Strauss, in prep.)

� U.S. EPA is working towards achieving environmental justice (EJ) in rule making
(U.S. EPA, 2014), but has no established summary measures yet.

� introduce Berliant-Strauss Vertical and Horizontal Equity Indices (Berliant and

Strauss, 1983; 1985; 1991).

Per-capita “Effective Air Pollution Tax Rate [%]”without CSAPR
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Environmental Justice: Distributional Effects of Air Pollution
41/45

(Heo and Strauss, in prep.)

� U.S. EPA is working towards achieving environmental justice (EJ) in rule making
(U.S. EPA, 2014), but has no established summary measures yet.

� introduce Berliant-Strauss Vertical and Horizontal Equity Indices (Berliant and

Strauss, 1983; 1985; 1991).
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Outline
42/45

1 Introduction

2 How to Better Quantify the Social Costs of Air Pollution?

3 How to Better Identify the Sources of Air Pollution Social Costs?

4 Optimal Societal Decision Making

5 Conclusions & FutureWork
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Conclusions
43/45

� I successfully developed two models (EASIUR and APSCA) that predict like
state-of-the-art air quality models but without high computational costs:
⇒ EASIUR estimates the social costs of emissions.
⇒ APSCA identifies all the sources of the social costs of emissions.

� The most comprehensive sets of marginal social costs (by EASIUR) and social
cost accounting information (by APSCA) are provided.

� My methods will continue to link policy research associated with air quality,
energy, and climate change with the latest atmospheric science because EASIUR
and APSCA can be updated as CTMs and/or input data change.
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FutureWork 1: Addressing Organic PM2.5

44/45

� EASIUR and APSCA for Organic PM2.5, the single missing pollutant:
⇒ Science evolved substantially for the past 10 years.
⇒ to explore public health implications and to characterize remaining
uncertainties.
⇒ Hugh policy implications related with gasoline and diesel emissions and
biomass burning from new organic science as well as EASIUR’s high resolutions.

FutureWork 2: Integrating with Systems Approach

� Integrating EASIUR and APSCA with optimization methods:
⇒ Develop a SIP support tool.
⇒ Develop a Cross-State Air Pollution Transport support tool

� Combine with energy and climate models for air quality co-benefit analysis.
⇒ Economic dispatch models (for electricity), Vehicle emission models, Building
energy models, Climate integrated assessment models.
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FutureWork 3: EASIUR and APSCA to theWorld
45/45

� Model China (Korea & Japan), India, and EU.
� Finally, develop Global EASIUR and APSCA for regions where data are too

limited to run advanced models.
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Thank you!
Employing the State of Science
in Optimal Policy Decision-Making

for Air Quality, Energy, and Climate Change

Jinhyok Heo

November 2017
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